由市场开发经理 Olivier Mathieu 发表
先进电子解决方案
谁在乎平整度?当然是工艺和应用工程师!这样说并非夸大其词,因为他们真正知道,了解和控制基板、底板和散热底板的形状,从而实现可能的最大产量和模块性能,是有多么重要!在本博文中,我会介绍一些关于平整度的信息,供大家在设计或使用功率模块时参考。
完全平坦的金属化陶瓷基板是不存在的
金属化陶瓷基板通常不是完全平坦的。在沿着生产线移动时,它们的形状很容易改变。从理论的角度来讲,基板不平坦的原因是因为金属(如铜=16.5 ppm/K)和陶瓷(如Al2O3=6.8 ppm/K)的热膨胀系数(CTE)不匹配。同时,其效果也取决于铜和陶瓷的厚度比,通常体现在母板的电路设计和单件排列上。此外,制造工艺也会影响到基板的平整度。在活性金属钎焊(AMB)中,铜和陶瓷薄片是在真空条件下被键合在一起。而在直接铜键合(DBC)工艺中,它们只是单纯地叠放在一起。这就是说,除重力外(可以通过特定的制造工具加以控制),DBC不会受到任何压力。在这两种情况下,铜和陶瓷薄片都是在极高的温度下进行键合,而由于热膨胀系数之间的差异,在材料冷却后,则不可避免地会残留应力。在再次加热后(如芯片贴装),温度处理将会释放应力,从而导致基板改变形状。此外,在铜和陶瓷键合后和模块制造商贴装芯片前,基板将在剩余的生产步骤和随后的包装和装运过程中,承受压力和经受温度变化。此外,应用于拆分基板的技术也会影响其平整度。
综上所述,显然完全平坦的金属化陶瓷基板是不存在的。它们要么是凸形,要么是凹形。从某种程度上说,这是为模块制造商所接受的。金属化陶瓷基板并非完全刚性的,当基板因制造商设备的装卸而受到一定压力时,基板可以被弯折,且不会折断,无论是否应用真空装夹技术、印刷焊料或烧结材料、芯片拾取和放置、芯片贴装和引线键合。But the machine parameters at each step of the process flow are set for only one given shape of the substrates. A significant variation of their shape may cause a local pressure increase and ultimately lead to ceramic breaking. 幸运的是,30多年来,罗杰斯电力电子解决方案事业部(PES)的专家一直致力于改善生产流程,从而避免过大差异并确保始终如一的高品质产品。
电源模块也不是完全平坦的
Once populated with semiconductor devices, substrates are usually soldered on a 3mm thick copper base plate. Here again, an assembly cannot be perfectly flat due to the differences in CTE and the thickness of joined materials. As a consequence, when the module is mounted on the heat sink, the shape of the base plate is not likely to match the shape of the heat sink. At a minimum, it is certain that the shape of the base plate cannot match the shape of the heat sink over the entire contact surface across all operating temperatures. Air inclusions in the gaps between base plate and heat sink significantly impact the thermal resistance of the system. Therefore thermal interface materials (TIMs) are usually applied on the back side of the modules to fill such gaps. However, even though TIMs exhibit much better thermal conductivity than air, they still are considered a thermal barrier as they represent the biggest share of the thermal resistance from chip-to-ambient. As a consequence, it is crucial to control and reduce TIM thickness. Conventional modules using a base plate are pressed onto the heat sink with screws at the corners or at the edges. For these standard modules, TIM thickness is typically 100µm. In the case of modules without a base plate, pressure is not only applied at the corners or at the edges of the module but at many points between the chips in order to achieve a much better pressure distribution over the entire substrate surface and hence a lower TIM thickness.
模块是用于改善与散热底板的接触,从而降低芯片-环境的热阻。就这一点而言,平整度无疑起到重要作用。由于每种设计、芯片位置、芯片大小和芯片距离的特殊性,底板剖面可能会出现一些孔洞。若最终用户未遵循模块制造商的安装步骤,这些孔洞将严重影响模块的性能。为避免这种问题,功率模块现均配备预制散热介质材料。此外,模块制造商正在开发新的封装技术来克服这种问题。As an example, the Direct-Pressed-Die technology has been developed by Semikron: a defined pressure is applied on the top of the chips in order to eliminate the cavities underneath. 基板不再被焊接而是压在底板上,而散热介质材料的厚度将被进一步典型地降低至10 µm。
不同材料间热膨胀系数 (CTE) 的差异的另一个后果是,当温度发生改变时,模块的形状也会发生变化。在进行任何开关操作时,模块和散热底板间的相对运动会将散热介质材料挤出界面间隙。这一现象被称为“泵出”,会因散热介质材料脱出界面而导致热阻提高。
In a nutshell: flatness is much more important than it appears at first glance. 您有任何设计问题么?或者,您在适用于贵方应用的基板或散热器选择方面需要帮助么?Rogers PES’ experts are available to help. 若您需要任何帮助,请联系我们。
相关产品:
curamik 陶瓷基板
标签:
Olivier's Twist 博客, 高可靠性, 燃油汽车与电动/混合动力汽车, 通用工业, 大型电器, 轨道交通, 风能和太阳能
发布于 2018 年 8 月 31 日